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Abstract. We present a new generation of tight-binding model for silicon which goes beyond the
traditional two-centre approximation and allows the tight-binding parameters to scale according
to the bonding environment. We show that the new model improves remarkably the accuracy and
transferability of the potential for describing the structures and energies of silicon surfaces, in
addition to the properties of silicon in the bulk diamond structure.

Silicon is an important material in the microelectronics industry. The structures and properties
of silicon have been the subject of extensive experimental and theoretical studies over the
past four decades. An outstanding problem in the computer simulation of silicon systems
at the microscopic level is the need for an accurate, transferable, and yet simple model of
the energetic and electronic properties of the material.Ab initio techniques have been well
developed in the past twenty years and can provide an accurate description of the materials, but
the computational cost is prohibitive for studying large systems. On the other hand, there are
quite a number of empirical interatomic potentials proposed for Si [1–7]. These potentials can
be used to simulate a large number of atoms, but they do not always give correct descriptions
of the properties that are not explicitly included in the fitting database. There is a large class
of problems which require more atoms thanab initio techniques can handle and demand more
accuracy than classical potentials can provide.

Tight-binding molecular dynamics (TBMD) [8] bridges the gap betweenab initiomethods
and classical-potential schemes. Tight-binding potentials are more accurate than classical
potentials. At the same time, TBMD is much faster thanab initio methods because the
Hamiltonian matrix elements are described by a set of parametrized functions. The scheme
becomes even more attractive due to recent developments in order-N algorithms for electronic
calculation and the use of parallel computers [9–12]. Nevertheless, generating an accurate and
transferable tight-binding potential for Si is a very challenging task due to the complicated
bonding character in the material. Although an enormous effort has been devoted to developing
transferable tight-binding potentials for Si in the past few years [13–18], existing tight-binding
potentials are successful only in the studies of certain properties of Si, and have not always
been very transferable to general geometries such as clusters and surfaces.

One of the major limitations in the transferability of previous tight-binding potentials is
the assumption of two-centre approximation for the tight-binding hopping parameters [19].
For example, in silicon, each Si atom has four valence electrons which can form strong sp3

hybrids in the diamond structure. In the fcc structure, however, the valence electrons are
shared by twelve neighbours leading to metallic bonding. These different bonding situations

0953-8984/99/082043+07$19.50 © 1999 IOP Publishing Ltd 2043



2044 C Z Wang et al

suggest that the interaction strength in the diamond structure should be stronger than that in
the fcc structure even when the interatomic distances are the same. It is obvious that the two-
centre approximation fails to describe these different bonding situations for the two different
structures. Another drawback of the two-centre approximation is that it cannot distinguish
between the nearest-neighbour and further-neighbour interactions since the interaction strength
depends only on the distance between the two atoms.

In this paper, we present a new generation of tight-binding potential for Si based on the
environment-dependent tight-binding model that we proposed for carbon [20] which goes
beyond the traditional two-centre approximation and allows the tight-binding parameters as
well as the repulsive energy to be dependent on the bonding environment. We show that this
new potential is very transferable and can describe well the structures and energies of silicon
in many different configurations.

To make the model as simple as possible, the potential is constructed using an orthogonal
sp3 basis and a scaling function for the tight-binding parameters in a form similar to that in the
two-centre approximation. The effects of nonorthogonality, multi-centre interactions, and the
variation of the local basis set with environment are taken into account through renormalizing
the pair interaction strength among atoms according to the surrounding atomic configurations.

Specifically, the hopping parameters and the pairwise repulsive potential are expressed as

h(rij ) = α1R
−α2
ij exp[−α3R

α4
ij ](1− Sij ). (1)

In this expression,h(rij ) denotes the possible types of interatomic hopping parameterVssσ ,
Vspσ ,Vppσ ,Vppπ and pairwise repulsive potentialφ(rij ) for atomsi andj . rij is the real distance
andRij is a scaled distance between atomsi andj (see equation (3)).Sij is a screening function.
The parametersα1, α2, α3, andα4 and parameters for the bond-length scaling functionRij , and
the screening functionSij can be different for different hopping parameters and the pairwise
repulsive potential. Note that expression (1) reduces to the traditional two-centre form if we
setRij = rij andSij = 0. The dependence of the tight-binding parameters on the bonding
environment is introduced through the screening functionSij and the bond-length scaling
functionRij .

The screening functionSij is expressed as a hyperbolic tangent (tanh) function with
argumentξij given by

ξij = β1

∑
l

exp

[
−β2

(
ril + rjl
rij

)β3
]

(2)

whereβ1, β2, andβ3 are adjustable parameters. The purpose of the screening function is to
reduce the interaction strength between two atoms in the solid if there are intervening atoms
located between them. Note thatξij depends not only on the distance between atomsi and
j , but also on the positions of the neighbours of atomsi andj . Maximum screening effect
occurs when the atoml is just sitting on the line connecting the atomsi andj (i.e., ril + rlj
is minimum). This approach allows us to distinguish between first- and further-neighbour
interactions without explicit specification of the neighbours.

The bond-length scaling function scales the distance between two atoms according to
their effective coordination numbers. Longer effective bond lengths are assumed for higher
coordinated atom pairs. The strength of the parameters for hopping between atomsi andj are
therefore dependent on the coordination number of the atoms: weaker interaction strength for
higher-coordinated structures. The scaling between the real and effective interatomic distance
is given by

Rij = rij (1 + δ11 + δ21
2 + δ31

3) (3)
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where

1 = 1

2

[(
ni − n0

n0

)
+

(
nj − n0

n0

)]
(4)

is the fractional coordination number relative to the coordination number of the diamond
structuren0, averaging between the coordination numbersni andnj of atomsi andj . The
coordination number is calculated as a smooth function,ni =

∑
j (1− Sij ), whereSij has the

form of the screening function described above. Note that wheni andj are nearest-neighbour
atoms,Sij is close to 0 andni counts almost one neighbour. Otherwise,Sij is close to one ifi
andj are not nearest-neighbour atoms, andni counts only a small fraction of a neighbour. By
choosing the parameters forSij asβ1 = 2.0,β2 = 0.028 95, andβ3 = 7.962 84,ni is calculated
to be 2.08, 3.14, 4.31, 6.14, 7.23, 10.00, and 11.93 for the linear-chain, graphite, diamond,
simple-cubic,β-tin, bcc, and fcc structures respectively. These values give a reasonable
representation of the effective coordination of these structures.

Besides the hopping parameters, the diagonal matrix elements are also dependent on the
bonding environments. The expression for the diagonal matrix elements is

eλ,i = eλ,0 +
∑
j

1eλ(rij ) (5)

where the expression for1eλ(rij ) takes the same form as equation (1), andλ denotes the
two types of orbital (s or p).es,0 andep,0 are chosen to be−2.924 75 eV and 3.857 95 eV
respectively.

Finally, we express the repulsive energy term in a functional form as in the previous
tight-binding model for carbon developed by Xuet al [21]; that is,

Erep =
∑
i

f

(∑
j

φ(rij )

)
(6)

whereφ(rij ) is a pairwise potential for atomsi andj , andf is a functional expressed as a
fourth-order polynomial with argumentx =∑j φ(rij ), i.e.,

f (x) =
n=4∑
n=0

cnx
n. (7)

Table 1. The parameters obtained from the fitting.α1 is in eV. The other parameters are
dimensionless.

α1 α2 α3 α4 β1 β2 β3

Vssσ −5.9974 0.4612 0.1040 2.3000 4.4864 0.1213 6.0817
Vspσ 3.4834 0.0082 0.1146 1.8042 2.4750 0.1213 6.0817
Vppσ 11.1023 0.7984 0.1800 1.4500 1.1360 0.1213 6.0817
Vppπ −3.6014 1.3400 0.0500 2.2220 0.1000 0.1213 6.0817
φ 126.640 5.3600 0.7641 0.4536 37.00 0.56995 19.30
1es ,1ep 0.2830 0.1601 0.050686 2.1293 7.3076 0.07967 7.1364

δ1 δ2 δ3

Vssσ 0.0891 0.0494 −0.0252
Vspσ 0.1735 0.0494 −0.0252
Vppσ 0.0609 0.0494 −0.0252
Vppπ 0.4671 0.0494 −0.0252
φ 0.082661 −0.023572 0.006036
1es ,1ep 0.7338 −0.03953 −0.062172
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Table 2. The coefficients of the polynomial functionf (x).

c0 (eV) c1 c2 (eV−1) c3 (eV−2) c4 (eV−3)

x > 0.7 −0.739× 10−6 0.96411 0.68061 −0.20893 0.02183

x < 0.7 −1.8664 6.3841 −3.3888 0.0 0.0

The parameters in the model are determined by first fitting to the self-consistent first-
principles density functional calculation results for electronic band structures, and then the
cohesive energy versus volume curves of diamond,β-tin, simple cubic, bcc, and fcc structures
respectively. Additional checks have also been made to ensure that the model gives reasonable
results for the elastic constants and phonon frequencies in the diamond structure. The
parameters obtained from such fittings are listed in tables 1 and 2. The cut-off distance for the
interactions is chosen to be 5.2 Å. The choice of the cut-off distance is somewhat arbitrary. It
makes the TB model reasonably short ranged. This cut-off distance is chosen before fitting
the TB parameters; it is therefore consistent with the resulting TB parameters.

Figure 1. The cohesive energies as a function of nearest-neighbour distance for silicon in different
crystalline structures calculated using the present TB model are compared with the results from the
first-principles LDA calculations. The solid curves are the TB results and the dashed curves are
the LDA results.

The cohesive energies as a function of nearest-neighbour distance for silicon in different
crystalline structures obtained from the present tight-binding potential are in good agreement
with the first-principles calculation results as one can see from figure 1. The potential
also describes reasonably well the phonon frequencies and elastic constants of the diamond
structure. The vibration frequencies at the zone centre (LTO(0)) and at the zone boundary
(TO(X), TA(X), and LOA(X)) calculated from this potential are 16.2, 12.8, 5.0, and 11.5 THz
in comparison with experimental values of 15.53, 13.90, 4.49, and 12.32 THz respectively.
The elastic constantsc11− c12 andc44 obtained from this potential are 0.993× 1012 erg cm−3

and 0.716× 1012 erg cm−3 respectively in comparison with experimental results of 1.012×
1012 erg cm−3 and 0.796× 1012 erg cm−3. The lattice constant and bulk modulus of the dia-
mond structure, from this potential, are 5.45 Å and 0.90×1012 erg cm−3, which are also in good
agreement with the experimental values of 5.43 Å and 0.978×1012 erg cm−3 respectively. The
potential has also been applied successfully in studying the structures of silicon clusters [22]
and silicon grain boundaries [23].

To further assess the transferability of the potential as regards describing more complex
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structures that are not present in the fitting database, we have applied the potential to study
point defects in bulk silicon and the surface reconstructions of the silicon (100) and (111)
surfaces. In these calculations, a Hubbard-like on-site term

Hu = u

2
(qi − q0)

2 (8)

whereqi is the Mulliken charge of atomi and q0 is equal to 4 for each silicon atom, is
incorporated into the tight-binding Hamiltonian to deal with the charge transfer in these
systems. The parameteru is chosen to be 4 eV in our present calculations, which gives
reasonable charge transfer on the silicon surfaces.

The point defect calculations are performed using a supercell of 215 atoms for vacancies
and 217 atoms for self-interstitials. The tetrahedral (T), hexagonal (H), and the [110]-split (S)
interstitial configurations are studied. The defect structures are fully relaxed until the largest
force on a single atom is less than 0.02 eV Å−1. The formation energies calculated after
the relaxation are 3.83, 3.60, 3.65, and 3.32 eV respectively for the vacancy and the T, H,
and S interstitials. Note that the present tight-binding calculation predicts that the [110]-split
interstitial is the lowest-energy configuration for a self-interstitial in Si, in very good agreement
with ab initio calculation [24].

Predicting the structures and the energies of the silicon surface reconstructions provides a
big challenge for the present tight-binding potential, as all the previous tight-binding potentials
fail to describe the reconstructions of the Si(100) and Si(111) surfaces correctly [18,25]. Our
structural optimizations of the Si(100) and Si(111) surfaces are performed with a slab of 12
layers (including the adatom layers for the Si(111)–(7× 7) structure). Supercells containing
342 to 498 atoms are used in the calculations. For each reconstructed structure, all of the atoms
in the slab are allowed to be relaxed until the largest force on an atom is less than 0.01 eV Å−1.

Table 3. Surface energies of the silicon (100) and (111) surfaces.1E is the energy relative to that
of the ideal (1× 1) surface. The energies are in units of eV per (1× 1) surface area.

Structure Surface energy 1E

Si(100)
(1× 1), ideal 2.292 0.0
(2× 1) 1.153 −1.139
p(2× 2) 1.143 −1.149
c(4× 2) 1.148 −1.144

Si(111)
(1× 1), ideal 1.458 0.0
(1× 1), relaxed 1.435 −0.025
(1× 1), faulted 1.495 0.037

(
√

3×√3)–t4 1.213 −0.245

(
√

3×√3)–h3 1.346 −0.112
(2× 1), Haneman 1.188 −0.270
(2× 1), π -bonded chain 1.138 −0.320
(7× 7), DAS 1.099 −0.359

For the Si(100) surface, we have optimized the (2×1), c(4×2), and p(2×2) reconstructed
structures. The surface energies of the various reconstructed structures obtained from the
present tight-binding model are listed in table 3. We find that the surface energy gains about
1.14 eV per (1× 1) surface area upon reconstruction. The p(2× 2) and c(4× 2) recon-
structions have energies slightly lower than that of the (2× 1) reconstruction. Most notably,
the present tight-binding potential correctly predicts the asymmetric dimer buckling structure
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for the reconstruction. The buckling angle is 18.3◦ for the (2× 1) reconstruction and slightly
larger for the p(2× 2) and c(4× 2) reconstructions. This is in excellent agreement with the
most recent LDA calculation result of 19◦ [26].

For the Si(111) surface, we have studied the structures and energies of the (2×1)π -bonded
chain model [27], the (2× 1) Haneman model [28], the (7× 7) dimer–adatom–stacking-fault
(DAS) model [29], and the(

√
3× √3)–t4, and the(

√
3× √3)–h3 structures. The surface

energies obtained from our present calculations are also listed in table 3. The energy orderings
of the different structures are in very good agreement with LDA calculations [30, 31] and
experimental observations. In particular, the lowest-energy structure is found to be the (7×7)
DAS reconstructed structure. Large buckling (with a buckling angle of 14.7◦) is also found
for the (2× 1)π -bonded reconstructed surface. We also calculated the energy of the Si(111)–
(1× 1) stacking-fault structure, which is found to be 0.06 eV per (1× 1) surface area higher
than that of the relaxed (1× 1) structure. This result is also in excellent agreement with the
LDA calculation result [30].

In summary, we present a new generation of tight-binding model for Si which goes beyond
the traditional two-centre approximation and allows the tight-binding parameters to scale
according to the bonding environment. We show that the new model improves remarkably
the transferability of the potential for describing the structures and energies of defects and
surfaces. We anticipate that the potential will be useful for molecular dynamics simulation
studies of temperature-dependent properties of silicon-based materials.
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